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Time-Discretization of Nonlinear Systems
with Time Delayed Output via Taylor Series

Zhang Yuanliang, Kil To Chong*
Faculty of Electronics and Information Engineering Chonbuk National University,
Duckjin-Dong, Duckjin-Gu, Jeonju 561-756, Korea

An output time delay always exists in practical systems. Analysis of the delay phenomenon

in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding dis-

crete-time model for implementation via a digital computer. A new method for the discretization

of nonlinear systems using Taylor series expansion and the zero-order hold assumption is pro-

posed in this paper. This method is applied to the sampled-data representation of a nonlinear

system with a constant output time-delay. In particular, the effect of the time-discretization

method on key properties of nonlinear control systems, such as equilibrium properties and

asymptotic stability, is examined. In addition, ‘hybrid’ discretization schemes resulting from a

combination of the ‘scaling and squaring’ technique with the Taylor method are also proposed,

especially under conditions of very low sampling rates. A performance of the proposed method

is evaluated using two nonlinear systems with time-delay output.

Key Words : Output Time-Delay, Scaling and Squaring Technique, Taylor-Series,

Time-Discretization

1. Introduction

Time-delays associated with output measure-
ments naturally arise in a variety of engineering
applications. Indeed, one may consider cases where
the process to be controlled or monitored is locat-
ed far from the computing unit, the measured
output data are transmitted through a low-rate
communication system, or of sensor technology
that inevitably introduces non-negligible time-
delays, which when unaccounted for, may under
mine the viability of the process control and moni-
toring system design. The convergence of com-
munication and computation in control systems
and the complex behavior of the control systems

* Corresponding Author,
E-mail : kitchong@chonbuk.ac.kr
TEL : +82-63-270-2478; FAX : +82-63-270-2475
Faculty of Electronics and Information Engineering
Chonbuk National University, Duckjin-Dong, Duckjin-
Gu, Jeonju 561-756, Korea. (Manuscript Received
September 14, 2005; Revised April 12, 2006)

with non-negligible time-delays are the two main
reasons for the special attention to the time-de-
layed status. It is difficult to apply the controller
design technique developed during the last several
score years for finite-dimensional systems to the
systems with any time-delays in the variables due
to their infinite-dimension. Thus, control system
design methods which can solve the systems with
time-delays are necessary.

A natural direction for time-delay system con-
trol is to attempt to extend the ideas and results of
nonlinear non-delay control to systems with de-
lay. Such results include the input-output lineari-
zation and decoupling, partial feedback lineariza-
tion with delay term domination, and extension of
control Lyapunov functions (CLF) to delay sys-
tems in the form of control Lyapunov-Razumikhin
functions (CLRF). Huang et al. (2004), presented
a novel start-controlled phase/frequency detec-
tor for multiphase-output delay-locked loops.
Gudvanden (1997) proposed a sliding Fermat
number transform to reduce the input-output de-
lay of finite ring convolvers and correlators. In
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many applications magnetic levitation systems are
required to have a large operating range. Choi
and Baek (2002) applied Time Delay Control
(TDC) to a single-axis magnetic levitation sys-
tem to solve this problem. Germani et al.(2002),
presents a new approach for the construction of a
state observer for nonlinear systems when the out-
put measurements are available for computations
after a non negligible time delay. Lee and Kim
(2003) proposed a high level CVT ratio control
algorithm to improve engine performance by con-
sidering the powertrain response time delay. Cho
and Park (2004) proposed a new impedance con-
troller for bilateral teleoperation under a time
delay.

Currently, modern nonlinear control strategies
are usually implemented on a microcontroller or
digital signal processor. As a direct consequence,
the control algorithm has to work in discrete-
time. For such digital control algorithms, one of
the following time discretization approaches is
typically used : time-discretization of a continu-
ous time control law designed on the basis of a
continuous time system ; and time-discretization
of a continuous time system resulting in a dis-
crete-time system and control law design in dis-
crete-time. It is apparent that the second ap-
proach is an attractive feature for dealing direct-
ly with the issue of sampling. Indeed, the effect
of sampling on system-theoretic properties of
the continuous-time system is very important be-
cause they are associated with the attainment of
the design objectives. It should be emphasized
that in both design approaches time discretization
of either the controller, or the system model is
necessary. Furthermore, notice that in the con-
troller design for time-delay systems, the first
approach is troublesome due to the infinite-di-
mensional nature of the underlying system dy-
namics. As a result the second approach becomes
more desirable and will be pursued in the present
study.

For digital simulation and design of continu-
ous-time delayed systems, it is often required to
have an equivalent discrete-time model available.
In the field of the discretization, for the origin-
al continuous-time systems with time free case

(Franklin et al., 1998), the traditional numerical
techniques such as the Euler and Runge-Kutta
methods have been used for acquiring sampled-
data representations. However, these methods need
a small sampling time interval. Due to physical
and technical limitations slow sampling is be-
coming inevitable. A time-discretization method
which expands the well-known time-discretiza-
tion of the linear time-delay system (Franklin et
al., 1998 ; Vaccaro, 1995) to a nonlinear continu-
ous-time control system with time-delay (Kazantzis
et al, 2003) can solve this problem. And this
method is applied to the nonlinear control sys-
tems with delayed multi-input (Park et al., 2004a)
and the nonlinear control systems with non-affine
delayed input (Park et al.,, 2004b). Scaling and
Squaring technique with this time discretization
method can also be applied to the nonlinear con-
trol systems with delayed multi-input (Zhang and
Chong, 2005).

In this paper, the digital state space represent-
ation of the dynamic systems with output time-
delay is presented. The proposed discretization
scheme applies Taylor Series expansion accord-
ing to the mathematical structure developed for
the delay-free nonlinear system (Kazantzis and
Kravaris, 1997 ; 1999). In particular, the effect of
the time-discretization method on key properties
of nonlinear control systems, such as equilibrium
properties and asymptotic stability, is examined.
Also, the well-known “scaling and squaring”
technique, which is widely used to compute the
matrix exponential (Higham, 2004) is expanded
to the nonlinear case when the sampling period is
too large.

Following this introduction, Section 2 briefly
describes the basic principles of discretization of
nonlinear system with delay-free output. Section
3 presents the detailed discretization of nonlinear
system with time delay output which is the main
work of this paper, and Section 4 presents the
scaling and squaring technique. Section 5 presents
the computer simulations of the proposed algo-
rithm. Finally, Section 6 presents a summary and
the conclusions drawn from this study.
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2. Discretization of Nonlinear System
with Delay-Free Output

Initially, output delay-free (D=0) nonlinear
control systems are considered with a state-space
representation of the form :

where x&EXCR” is the vector of states and X
is an open and connected set, #E R is the in-
put variable. It is assumed that f (x) and g(x)
are real analytic vector fields on X. The output
y(¢#) €ER is a function of the state x.

An equidistant grid on the time axis with mesh
T=tw1—1t. is considered, where [tx, fps1)=
LET, (k+1) T) is the sampling interval and Tis
the sampling period. It is assumed that for 2T <
t<kT+ T, the zero-order hold (ZOH) assump-
tion holds true:

u(t)=u(kT)=u(k) =constant (2)

Under the ZOH assumption, the solution of (1) is
expanded in a uniformly convergent Taylor series
(Vydyasagar, 1978):

T d'x
[V dtt e
= (k) + BA e (k). ulk) L )

v(k)=h(x(k))

x<k+1)=x<k>+g

where x (k) is the value of the state vector x at
time t=¢,=kT, and A'"(x, u) are determined
recursively by :

AU (x, u)=F(x) +ug(x)

:‘M[l]a<+”>(f(x) tug(x), 4

[=1,2,3, -

Al (x, %)

The Taylor series expansion of Eq. (3) can offer
either an exact sampled-data representation (ESDR)
of Eq. (1) by retaining the full infinite series
representation of the state vector :

x(k+1)=0r(x(k), ulk))
:ﬂm+gAm&%Lu%N

v(k)=h(x(k))

or an approximate sampled-data representation
(ASDR) of Eq. (1) resulting from a truncation of
the Taylor series of order N :

x(k+1) =07 (x(k), u(k))
=x (k) + A (x (). (k)

v(k)=h(x(k))

T

~

Tl
r (6

where the subscript of the map @f denotes the
dependence on the sampling period 7 of the sam-
pled—-data representation obtained under the above
discretization scheme, and the superscript /N de-
notes the finite series truncation order associated
with the ASDR of Eq. (6).

Remark 1
ESDR of Eq.(5) represents the nonlinear an-

It is important to observe that the

alogue of the exact discretization scheme avail-
able for linear systems. Indeed, consider the linear
delay-free output control system with a state-
space representation of the form :

dx(t)
i =Ax(t) +bu(t) )

v(t)=Cx (1)

where A, b, C are constant matrices of appro-

priate dimensions. Integrating Eq. (7) within the
sampling interval and under the ZOH assumption
results in :

x(x+1)=Ax (k) +bu(k)
—exp(AT)x (1) +{ [ exp(Af) bt Julk) (8)

y(k)=Cx (k)

where x (k) and y(k) are the value of the state

vectors x (¢) and y(¢) at time t=t,=£kT, respec-
— _ T

tively, A=exp(AT) and b=/(; exp (At) bdt, and

the exponential matrix is defined through the uni-
formly convergent power series :

) 11
exp (At) 2120% 9)

The notion of the exponential matrix allows a



Time- Discretization of Nonlinear Systems with

compact expression for the exact sampled-data
representation (ESDR). Eq. (8) of the original
linear continuous—time system (7). However the
underlying series representation of the ESDR Eq.
(8) dependence in T emerges, once the definition
of the exponential matrix is used. Indeed, Eq. (8)
may be rewritten as follows :

x(k+1)=Ax (k) +bu(k)

= (B) + B A (Ax B+ bu (k)L (10)

y(k)=Cx (k)

If the recursion formula Eq. (4) is applied to a
linear system f (x) =Ax, g(x) =>b, then it is easy
to show that A (x, u)=A%+ A 'by and there-
fore the linear result in Eq. (10) is naturally re-
produced.

Definition 1 Given f, an analytic vector field
on R” and /%, an analytic scalar field on R”, the
Lie derivative of % with resp

ect to f is defined in local coordinates as (Kazantzis
et al., 2003):

Lh(x) =%ﬂ+-~+§—£ . (11)

In light of Definition 1, the solution to the re-
cursive relation (4) may be represented in terms
of higher-order Lie derivatives as follows :
A (x, u)=(L;+uLg) x: (12)
where the subscript 7=1, ---, n denotes the 7-th
n n
component and szgfi(x)%, Lg:ZIgi(X)
% are Lie derivative operators. This allows
for the representation of the series expansion Eq.
(3) as a uniformly convergent Lie series for the
ESDR :

x(k+1)=0r(x(k), u(k))
=x(k)+ i (Lit+ulLg)'x |(x(k>,u<k>)% (13)

y(k)=h(x(k))
and similarly for the ASDR:
x(k+1) =07 (x(k), u(k))

N . T!
=x (k) + Zi (LytuLe) |(x(k),u(k))7

(14)
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3. Time-Discretization of Nonlinear
System with Time-Delay Output

A discrete-time nonlinear time-delayed input
system can be obtained using Taylor series and it
has been shown that the expansion of single di-
mensional system to # dimensional system is pos-
sible. Similarly it can be expanded to output-
delay case. The discretization method of general
nonlinear system with output delay is developed
using Taylor series expansion. The nonlinear con-
tinuous control system with output time-delay
can be represented as follows.

() =f(x () +ult) g(x(t))

(15)
y(t)=h(x(t—D))

where D >0 is the measurement delay.
Let

D=qT+y (16)

where ¢={0, 1, 2, -} and 0<y< T, ie., the
time-delay D can be represented as an integer
multiple of the sampling period plus a fractional
part of T (Franklin et al., 1998 ; Vaccaro, 1995).

Basing on the ZOH assumption and the above
notation the sampled-data representation of the
nonlinear system with delayed output can be de-
rived from Eq. (3) result in the following equa-
tions.

ult)=ukT—qT—T)=ulk—q—1)

i hT—gT—T<t<kT—qr 7

and
2(kT—qT~y)=xk—q~1)
FSA g1, ulh—g 1) 70
it kT —qT-T<t<kT—-qT-y
x(kT—¢T)=x(kT—qT~7) (18)

) l
+RA T =qT=7), ulk=g=1)
if kT—qT—y<t<kT—qT

y(kT)=h(x(kT-D))=h(x(kT—¢qT~7))

where x (k) and A'Y(x, u) are the same as above
delay-free case.
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Theorem | Let x° be an equilibrium point of

the original nonlinear continuous-time system :
dx( ) =f(x) tug(x), y(t)=h(x(t)), that be-
longs to the continuous-time equilibrium mani-
fold : E°={xER"| JuER : f (x) +ug (x) =0},
and %=1" be the corresponding equilibrium val-
) +u’g (x°) =0.
The x° belongs to the discrete-time equilibrium
manifold : E¢={xER"| JucR: O2(x, u)=x}
of the ESDR: x (k+1) =0 (x(k), u(k)) and
ASDR : x (k+1) =0%¥"(x(k), u(k)) obtained un-
der the proposed Taylor-Lie discretization meth-

ue of the input variables: f(x

od, with %#=1u" being the corresponding equilib-
02 (x° u®

rium values of the input variables :
and QP (x° u®) =x".

Proof : x° is the equilibrium point and 2° is the
corresponding equilibrium values of the input
variable.

= AM(x° 4% =f (x°) +2°g (x°) =0

dAM (x°, u®)

= AU (x°, 4% = pe AW (%, 4°) =0

for all /{1, 2, 3, -}

=) _ l
= Or, (2%, °) =x°-|—l:21A[” (x°, u°)<T17,7>:x0

=0, (D71, (2%, u°), u’) =x°
Similar arguments apply to the @%” map of the
ASDR. Therefore, xo belongs to the discrete-time
equilibrium manifold E of the ESDR and ASDR
for any finite truncation order N.

= 02(x° u°)

Theorem 1 essentially states that the output
time-delay nonlinear control system equilibrium
properties are preserved under the proposed Tay-
lor discretization method.

Theorem 2 Assume that matrix /= PJ[-I-M0 gﬂ( %)

is Hurwitz, so that x° is a locally asymptotically
stable equilibrium point of the delay-free system :

a’x()

=f(x(t)+g(x(t)ult), y(t)=h(x(t))

Then :

(1) x°1is a locally asymptotically stable equi-
librium point of the ESDR.

(2) x°is a locally asymptotically stable equi-
librium point of the ASDR for sufficiently large
N, when T is fixed.

The following technical lemma is essential and
its proof can be found in (Kazantzis and Kravaris,
1997).

In the single input status, let x° be an

equilibrium point of d)i;tt) =f(x(t)) +g(x(t)) ult—D)

Lemma 1

that corresponds to #=1". For any analytic sca-
lar field % (x) and positive integer / the following
equality holds :

|(x° u0)

_on ﬁ 0 0g

_6’xi8x+ axi (+)
N

The i-th row of the matrix ag;

o [Lf+uLg] h(x
(19)

(x° #° can be

calculated as follows :

N l
3@ (x u ) :EiULf‘i‘uLg) lx::ii(x",u")L'
8x Soox /! (20)
_Sowi(of | o002\ o T"
_E)Gx(&er 6‘x><x)l!
Proof : Due to Lemma 1.
00F (o oy —n( O | 002\ o T
o <"’”>_2<ax %) e o

N Tl
l
for an ASDR of finite truncation order NN, or

Gty =e| (Gera )N T]

=exp(MT)

for the ESDR (N — o)
Now consider the ESDR with time-delay D.
Note that :

D
PO (30, 1) =L@, (", ). )
=exp(My)exp(M (T —y

=exp(MT)

) (23

Since M is Hurwitz, it can be inferred that all the
0072

eigenvalues of o

(x° #%° have modulus less

than one, and hence x° is a locally asymptotically
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stable equilibrium point of the ESDR.
Consider now the ASDR. One obtains :

N,D N
50, o) =227 (0 (2, ), )
— % % Ml1+lz 711 < Tﬁ 7) tz <24>
_ll=012=0 ll' ZZ'

Now notice that for a stable eigenvalue A; of

M (Re[A;]<0), the corresponding eigenvalue a;
00" o o, _ &L i Yy (T—y)"

of oy b u) s ai= 2 B A

is stable only when |a;|<1.

Since for a fixed T and as N — <o, g; — exp (A;
7)exp(A(T—y)) =exp(AT), one can always
find a sufficiently large order of truncation N
such that: | a;|<1.

4. Scaling and Squaring Technique
(SST)

When T is considerably large A T/]! might
become extremely large before it becomes small
at higher powers, where convergence takes over.
An SST which is also called extrapolation to the
limit technique in the numerical analysis litera-
ture can be applied to solve this kind of problem.
By applying SST when T is large enough, one
can divide the interval (¢, fx11) into 2™ equally
spaced subintervals and use a small Taylor ex-
pansion of order N with a time step 7/2" for
the 2™ intermediate subintervals to substitute
the larger order N’ used in the single-step Taylor
method case.

Assume now that Q(N’, T): R"— R" is the
operator that corresponds to the Taylor expan-
sion of order N’ with a time step 7", and when it
acts on x(£7T) the outcome is :

x(kT+T)=Q(N', T)x(kT) (25)
T
I

Using operator notation, the resulting discrete-

where Q(N', T) () =T+ ZA®(x (), u(k)

time system may now be written as follows :

T

x(ET+ T)z[Q(N,Z—m

)me (kT)  (26)

How to choose the parameters of N and m is an

important implementation. Different values of N
and m can reflect different requirements of the
discretization performance. In this paper we use
the two elements: i) simplicity and computing
time ; and ii) numerical convergence and accura-
cy requirements to select these two kinds of para-
meters. In fact the criterion for selecting an ap-
propriate 2 involves a comparison of the magni-
tude of the sampling period 7T with the fastest
time constant 1/p of the original continuous-
time system. If 7" is small compared to 2/p, then
we can set m=0 and we apply the single-step
Taylor-Lie series method. When T is larger than
the fastest time constant 2/, we apply the SST.
The sampling interval is subdivided into 2™ sub-
intervals, and a low-order N single step Taylor
discretization method is applied for each subin-
terval. Thus, this method indicates that the fol-
lowing inequality should hold : 7/2"<2/p.
And the SST can be applied to the nonlinear
control systems with time-delayed output. In this
case, we do not consider the single sampling
interval T but the subintervals of 7°—y and 7.
The method to choose m can also be used by
changing 7 of that preceding equality into these
subintervals of T—y and y. That is

Mr—y=max < [logz< Tg z )}L 1, o) and
s 5)] 1.0

5. Simulation

(27)

Two examples are considered in the compu-
ter simulations. The system 1 is a simple non-
linear system with delayed output measurements
(Germani et al., 2002):

1(8) =i (1)
%2(1) =corr (£) oo () 22 () +caxa (8) u () (28)

y(t) =csx (t—D)

(¢
(t

with all ¢;50. In this example we assume ¢;=1,
1, =15, u(t) =1, x:1(0) =
| and x2(0) =—1. There are three cases consi-

Co— *2, C3— 1, C4—

dered in system1. The parameters used in the sim-
ulation are; 7°=0.001s, D=0.0028s for case 1:



956 Zhang Yuanliang and Kil To Chong

T =0.005s, D=0.008s for case 2 and 7°=0.01s,
D=0.006s for case 3.
This system can be discretized as followings ;

1(kT—D)=x1(kT—qT—T) +x(kT—qT—T)d

N {—le(kT—qT—T)+x1(kT—qT—T)m(kT—qT—T)}dz
4k T—qT-T)ulk—q—1)

% (RT—D)=x:kT—qT—T)
{—m(kT—qT—T) +xl<kT—qT—T>xz<kT—qT—T>} ;o)
+1(kT=qT-T)ulk—g-1)

(=24 20(kT-qT-T) +ulk—g-1)) (kT -qT-T)

0545 (kT—¢qT-T) (-2 (kT—-qT-T) &

+0(kT-qT- Tk T—qT-T) +1(kT—¢T-T)ulb—q-1))

The simulations have been performed by Maple.

Table 1 Numerical result of output for case | of
System 1 ; 7°=0.001, D=0.0028

During the simulations process the Taylor co-
efficient was determined as N=2. Table 1 and
Fig. 1 show the attributes of the simulation for
case 1; Table 2 and Fig. 2 are for case 2; and
Table 3 and Fig. 3 similarly show the simulation
results of case 3. The absolute value of the out-
put error for case | ranges from 0.0825X1072 to
5.3993 X 107%; case 2 ranges from 0.0098 X 1072 to
1.0180X1072; and case 3 ranges from 0.0114 X
1072 to 1.0929 X 1072 From these results we can
observe that the discretization scheme is more
accurate if the sampling period is smaller. That is
as the sampling time increases in size, you have to
use an increasingly large Taylor order N to
achieve the better results.

The simulation of system 2 has been performed

Table 2 Numerical result of output for case 2 of
System 1; 7°=0.005, D=0.008

X1(t—D) Yi(t) X1(t—D) Yi(t)
MATLAB | Maple | MATLAB| Maple MATLAB | Maple | MATLAB | Maple
500 0.2798 0.2787 0.4197 0.4181 100 0.2891 0.2873 0.4337 0.4310
1000 | —0.6100 |—0.6109| —0.9150 |—0.9164 200 —0.6019 | —0.6034| —0.9028 |—0.9052
1500 | —1.1593 |—1.1596| —1.7389 |—1.7395 300 —1.1561 |—1.1567| —1.7341 |—1.7350
2000 | —1.2626 |—1.2625| —1.8939 |—1.8938 400 —1.2633 | —1.2632| —1.8949 |—1.8947
2500 | —1.0868 |[—1.0865| —1.6302 |—1.6298 500 —1.0895 | —1.0890| —1.6343 |—1.6335
3000 | —0.7751 |—0.7747| —1.1626 |—1.1620 600 —0.7787 | —0.7780| —1.1681 |—1.1670
3500 | —0.4024 |—0.4020| —0.6037 |—0.6030 700 —0.4024 | —0.4057| —0.6037 |—0.6086
4000 | —0.0063 [—0.0059| —0.0095 |—0.0089 800 —0.0105 | —0.0098| —0.0157 |—0.0146
4500 0.3901 0.3905 0.5852 0.5857 900 0.3861 0.3867 0.5791 0.5801
5000 0.7640 0.7642 1.1460 1.1464 1000 0.7603 0.7609 1.1405 1.1413

The results of output time-delay System 1 case 1
T

creteria results y
| simulation results y

8 T

auipul response

M[sec]

Fig. 1 The response of output for case 1 of System 1

The msults of output time-delay System 1 case 2

— crefena resulis y
simulation results

oulput response

4 ] 8 10 12
M[sec]

Fig. 2 The response of output for case 2 of System 1
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for the following nonlinear continuous system :

() =—=3x(t) +u(t) —u(t)x () —x*(¢)
y(t)=2.5exp(ax(t—D)) (30)
x(0) =0

u(t)=09(—1)*%

This system can be discretized as the following
(Taylor order N=2):

x(BT—D)=x(k—q—1)
+[3x(kql)+u(kql) ]d
—x(k—q—Du(k—q—1)—x(k—q—1)*
+0.5[—3—u(k—q—1)—2x(k—q—1)]
{—3x(k—q—l>+u(k—q—1) ]dz
—x(k—qg—Dulk—q—1)—x(k—q—1)*

(30)

The parameters selected for the first simulation
in system 2 are ; =20, 7=0.05s, D=0.02s. The
Taylor series orders are chosen as N=1, 2, 3 for
three cases. Table 4 shows the simulation results
in which the exact values are obtained using Matlab.
Figure 4 shows the error of the output. For the
second simulation of the system 2, we choose para-
meter are as a=2, 17 =0.5s, D=0.2s, and the
Taylor order N=3, 5, 9. Table 5 and Fig. 5
present the simulation results of the second case
of the system 2. These preceding results reveal that
it is more accurate if the Taylor order N is larger.

In the last simulation, the parameter have been
determined as ¢=1, T=35s, and D=2s. First, a
single-step Taylor method has been worked out.

Table 4 Numerical result of output for case 1 of

Table 3 Numerical result of output for case 3 of System 2
System 1 ; 7°=0.01, D=0.006 %
Time
X1(¢=D) Vi) Step act Taylor Taylor Taylor
MATLAB | Maple | MATLAB| Maple At (N=1 | W=2) | (N=3)
50 0.2855 0.2819 0.4283 0.4229 1 4.1611 4.2900 4.1566 4.1611
100 —0.6050 |—0.6082| —0.9075 | —0.9122 2 3.1891 3.2503 3.1872 3.1891
150 —1.1573 |—1.1586| —1.7360 | —1.7378 3 3.7429 3.8976 3.7374 3.7430
200 —1.2630 [—1.2628| —1.8946 | —1.8941 4 2.9096 2.9927 2.9067 2.9096
250 —1.0885 [—1.0874| —1.6327 | —1.6311 5 3.4613 3.6346 3.4551 34614
300 —0.7773 [—0.7759| —1.1660 | —1.1639 6 2.7190 2.8179 2.7154 2.7190
350 —0.4049 [—0.4034| —0.6074 | —0.6051 7 3.2669 3.4542 3.2601 3.2670
400 —0.0089 |—0.0073| —0.0133 |—0.01102 8 2.5861 2.6970 2.5821 2.5861
450 0.3876 0.3891 0.5814 0.5836 9 3.1302 3.3283 3.1230 3.1302
500 0.7617 0.7630 1.1426 1.1445 10 2.4919 2.6122 2.4876 2.4919
2 The results of outpul time-delay System 1 case 3 o The ermors of system output in case |
:
T T ? < 01 3
i H / E—

outpul nEsponssE

tjsec]

Fig. 3 The response of output for case 3 of System 1
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Table 5 Numerical result of output for case 2 of

System 2

Time Taylor . Taylor Taylor

M| | v=y) | =) | v=9)
1 3.4207 3.4869 3.4143 3.4207
2 2.0493 2.0018 2.0412 2.0492
3 2.9968 2.9949 2.9776 2.9969
4 1.9887 1.9427 1.9799 1.9886
5 2.9768 2.9713 2.9571 2.9769
6 1.9856 1.9396 1.9767 1.9856
7 2.9758 2.9700 2.9560 2.9759
8 1.9855 1.9394 1.9766 1.9854
9 2.9757 2.9699 2.9560 2.9758
10 1.9855 1.9394 1.9766 1.9854
o The errors of system output in case 2

g

output emars

2 25

i 1|sec]

Fig. 5 The response of output for case 2 of System 2

The attributes of the simulation are presented in
Table 6. As shown in Table 6, it is difficult to
discretize the system accurately if the sampling
period is very large. It is recommended to imple-
ment the SST in this case. The simulation results
of the SST implementation are shown in Table 7.
The required computational time of this SST
simulation are shown in Table 8.

Table 6 Numerical result of output for case 3 of

System 2
Time Tayl T Tayl Tayl
sor | o | S0 T T 00
1 0.2185 41.21 | —3349.93 *
2 —0.5702 * * *
3 0.2185 * * *
4 —0.5702 * * *
5 0.2185 * * %
Time Tayl T Tayl Tayl
aylor aylor aylor
Step exact (Ny= 0 (Nyzz) (Ny=3)
1 3.1106 * * *
2 1.4135 * * *
3 3.1106 * * *
4 1.4135 * * *
5 3.1106 * * *
* Denotes order of magnitude greater than 10°

Table 7 Numerical results of SST for case 3 of system 2

Y
Time Taylor Taylor Taylor Taylor Taylor
Step exact (N=1) (N=2) (N=3) (N=4) (N=5)
L=6,M=6 | L=5 M=5 | L=4, M=4 | L=4, M=4 | L=3, M=3
1 3.1106 3.1106 3.1106 3.1106 3.1106 3.1106
2 1.4135 1.4099 1.4140 1.4132 1.4135 1.4129
3 3.1106 3.1106 3.1106 3.1106 3.1106 3.1106
4 1.4135 1.4099 1.4140 1.4132 1.4135 1.4129
5 3.1106 3.1106 3.1106 3.1106 3.1106 3.1106
6 1.4135 1.4099 1.4140 1.4132 1.4135 1.4129
7 3.1106 3.1106 3.1106 3.1106 3.1106 3.1106
8 1.4135 1.4099 1.4140 1.4132 1.4135 1.4129
9 3.1106 3.1106 3.1106 3.1106 3.1106 3.1106
10 1.4135 1.4099 1.4140 1.4132 1.4135 1.4129
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Table 8 Required computing time for SST in case 2 of system 2 (sec)

N 1 1 1 2 2 2 3 3 3

1 6 7 8 6 7 4 5

m 8 5 6 7 4 5

t 57.2 135.8 328.6 45.3 104.2 240.6 30.6 67.8 149.3
N 4 4 5 5 5 6 7 8

1 6 3 4 5 3 3 3
m 4 5 6 4 5 3 3 3

t 40.2 87.2 194.3 24.9 55.3 118.7 323 41.1 54.4

The simulation has been performed for 3000
steps.

6. Conclusions

This paper has presented an approach for the
discrete-time representation of a nonlinear con-
trol system with output time-delay in control.
This system is based on the ZOH assumption and
the Taylor-Series expansion, which is obtained
as a solution of continuous-time systems. The
mathematical structure of the new discretization
scheme is explored and characterized as useful for
establishing concrete connections between nu-
merical and system-theoretic properties. In par-
ticular, the effect of the time-discretization meth-
od on key properties of nonlinear control systems
with output time-delay, such as equilibrium pro-
perties and asymptotic stability, is examined. Also,
the well known “scaling and squaring” technique
is expanded to the nonlinear case when the sam-
pling period is too large. The proposed scheme
provides a finite-dimensional representation for
nonlinear systems with output time-delay ena-
bling existing controller design techniques to be
applied to them.

The performance of the proposed discretization
scheme is evaluated using two nonlinear systems.
For these two nonlinear control systems various
sampling rates and time-delay values are consi-
dered, demonstrating the accuracy of the propos-
ed discretization scheme.
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